
The
State
Of
Pentesting
2021

The
State
Of
Pentesting
2021

Vulnerabilities pg. 4 - 10
Risk analysis and the most common vulnerabilities across
assets and industries	

Remediation pg. 11-16
How teams fix vulnerabilities and what factors
impact results

Conclusion pg. 17-19
Why teams struggle with widely known issues and how
pentesting can better support them

Appendix pg. 20-26
Methodology and deep dive into how to fix and
prevent flaws

Authors pg. 27
Jay Paz and Robert Kugler

Table Of Contents

“There’s no silver bullet solution with cybersecurity, a layered
defense is the only viable defense.” - James Scott, Senior Fellow
and co-founder of ICIT

As security teams continue to search for ways to deter cyberattacks, it becomes more
obvious that multiple lines of defense are the most sound strategy they can take. As
business priorities increasingly revolve around engineering output and data privacy,
multiple testing types integrate more closely with different stages of the Software
Development Lifecycle and link up to discover vulnerabilities before it’s too late.

And yet there are issues that routinely slip past teams’ watchful eyes. As a pentest
provider, Cobalt witnesses firsthand how vulnerabilities ranging from Low to High severity
make it to software and systems that handle terabytes of sensitive information.

We publish our annual State of Pentesting report to shed light on what those
vulnerabilities are, and identify the trends and hazards that impact the cybersecurity
community. We collect the data via our proprietary Pentest as a Service (PtaaS)
platform, which connects security teams with a carefully curated and thoroughly
vetted community of pentesters to examine their systems and software.

This year, we looked at data from 1602 pentests performed in 2020 to learn about the assets
getting tested, the vulnerabilities being discovered, and how that data changes across different
industries and company sizes. We identified an interesting trend: our customers have been
struggling with the same top 5 vulnerabilities for 4 years in a row. Despite the fact that they
are well-known to the industry, teams struggle to effectively remove and prevent issues
like Server Security Misconfigurations and Cross-Site Scripting from their environments.

To understand why that was, we surveyed 601 companies (not Cobalt customers) to learn
how they pursue secure development, how they pentest and remediate vulnerabilities, and
where there is room for process improvements for both internal teams and security vendors.

What we found was an interesting mixture of pain points, workflow challenges,
and suggestions on how pentesting can evolve as a layer of defense that can
help validate the effectiveness of all the other controls that come before it.

Executive Summary

4

Vulnerabilities
We began the hunt for trends by examining the data from our
Pentest as a Service (PtaaS) platform. We looked at the types
of tests we performed and the types of security issues our
pentesters found in 2020. From our sample of 1602 pentests,
the majority of our customers came to us specifically for Web
Application testing or Web App and API testing—nearly 75% of
them. The rest of our sample was made up of combinations of
Mobile, External Network, and Internal Network testing.

How much risk are
teams managing?
When we discover vulnerabilities, we rate them according
to the OWASP methodology, based on their likelihood of
exploitation and impact if exploited. Likelihood includes the
level of skill an attacker would need to exploit a vulnerability,
the availability of documented exploits, and the relative
ease of exploitation. The Impact includes the effect on the
confidentiality, integrity, and availability of data or systems,
as well as potential financial or reputational losses.

High: Vulnerabilities that introduce the most
risk of disruption, due to the high impact and
high likelihood. Cobalt recommends addressing
vulnerabilities at this level as quickly as possible.

Medium: Vulnerabilities that introduce a
moderate amount of business risk. These include
risks with high impact but low likelihood, and
risks with low impact but high likelihood. Cobalt
recommends addressing these vulnerabilities to
improve the overall security posture.

Low: Vulnerabilities that introduce a
relatively small amount of risk, but could
still have some impact or likelihood. Cobalt
recommends addressing these vulnerabilities
when there are no higher priority items.

VULNERABILITY RISK RATING

LowLow HighHigh
15.4%15.4%

31.0%31.0%

53.6%53.6%

MediumMedium

https://owasp.org/

5

What vulnerability categories are the
most common?
To get a glimpse of what flaws slip past security teams’ internal checks, we continue our analysis
with the top 5 most common vulnerability categories that our pentester community discovered.
Unsurprisingly, 2020’s list reveals vulnerabilities that are also outlined in the OWASP Top 10:

We have analyzed our data for the
State of Pentesting report every year
since 2018, and these vulnerability
categories have consistently been
our top 5 for each report. The order
in which they appear has shifted
over time, but Server Security
Misconfigurations have been at the
top of the list, and by a significant
margin, every year running.

This leads us to believe that security teams are struggling to effectively remove and
prevent issues that are well-known to the industry. There can be several reasons for this—
gaps in secure development, insufficient investment in security awareness and training,
ineffective remediation, or bugs staying open because of low perceived impact and/or
lack of resources. We explore more anecdotal data on this point under “Remediation.”

1.	 Server Security Misconfigurations: 28.1%

2.	 Cross-Site Scripting: 15.5%

3.	 Broken Access Control: 14.7%

4.	 Sensitive Data Exposure: 8.4%

5.	 Authentication and Sessions: 8%

Top 5 Most Common Vulnerabilities

High-risk vulnerabilities were in the minority among our customers, while more than
half of the Findings we discovered were rated Low. However, we still recommend
that clients address the Medium- and Low-risk vulnerabilities, because an attacker
could find a way to chain several of those less-severe findings together to gain
greater access. We explore this observation in more detail under “Remediation.”

Why Three Groups? A lot of pentesting organizations group vulnerabilities differently,
having a Critical category for the most Likely and most Impactful vulnerabilities,
and an Informational category for vulnerabilities with a very low risk. Cobalt sticks
with the High, Medium, and Low categories because labeling one item as “Critical”
can make other still-risky vulnerabilities sound less important, and labeling an
issue as “Informational” can make it sound like it’s not worth fixing.

Cross-Site Scripting (XSS)Cross-Site Scripting (XSS)

Reflected XSSReflected XSS

Stored XSSStored XSS

6

Looking deeper into our data
This year we’re diving one level deeper into our analysis by observing the specific
findings that come up across different methodologies, industries and company sizes.
Going this granular helps us determine risk more accurately—for example, with Cross-
Site Scripting the risk differs considerably between the Stored and Reflected findings.

But first, a word on taxonomy. Different pentest providers—and cybersecurity
organizations as a whole—use different terminology and frameworks to describe
their data. To help readers follow our report, here is an overview of the taxonomy
we use at Cobalt, which is mostly guided by OWASP best practices:

The building block of our taxonomy are Findings, which are the individual issues our
testers discover. Findings are then grouped into a vulnerability category. For example:

Finding #1: An instance of Reflected XSS.
When an attacker passes script code to the
server in a user-editable location within a
request, the application returns it as part of the
server’s response, which the user’s browser
interprets and renders as part of the page.

Finding #2: An instance of Stored XSS. When
an attacker passes script code to the server
in a user-editable location within a request,
the application stores it on the server. When
another user accesses the affected page,
that user’s browser interprets and renders
the stored code as part of the page.

Vulnerability Category: The root cause for both of these findings is that the application is
vulnerable to Cross-Site-Scripting attacks, which happens when the application does not validate
and encode user-supplied input properly, so it gets treated as code, rather than as text.

7

With this system in mind, we looked at the top 5 findings from our entire 2020
database, regardless of vertical or asset type. Here’s what we found:

At first glance, the percentages
might look small, but that’s in part
because of the total number of
findings we observe in our platform.
Among 286 possible options that
are grouped into 23 vulnerability
categories, these top 5 findings were
the most commonly discovered and
represent roughly 30% of our data.

It’s interesting to note that
both of Cross-Site Scripting’s
variations appeared frequently
in our pentests. Despite the fact
that this vulnerability became
big news over 10 years ago—and some parts of the community have gone so far as to
declare it dead—our data and the OWASP Top 10 lists suggest otherwise. And while this
type of vulnerability is rarely reflected in big breach stories, its impact on both companies
and their customers is not negligible, risking exposure to highly sensitive information.

What are different assets vulnerable to?
While the top 5 overall findings help set the tone for what specific issues security
teams can focus on, they won’t be helpful to every reader. You’ll notice that
many of these findings will relate to web assets, and that’s partly because
the majority of pentests we did in 2020 covered web applications.

To help readers determine the most prevalent threats to their mobile applications,
networks, or even combinations of different assets, we’ve broken the data down
to the top 3 findings observed from different testing methodologies.

1.	 Broken Access Control: Insecure Direct Object
References (IDOR): 9.4% of total findings

2.	 Cross-Site Scripting: Stored: 8.7%

3.	 Components with Known Vulnerabilities:
Outdated Software: 4.1%

4.	 Broken Access Control: Username/
Email Enumeration: 3.8%

5.	 Cross-Site Scripting: Reflected: 3.7%

Top 5 Findings For 2020

https://owasp.org/www-project-top-ten/

1st Place 2nd Place 3rd Place

Web Cross-Site Scripting (XSS):
Stored

Broken Access Control:
Insecure Direct Object
References (IDOR)

Cross-Site Scripting (XSS):
Reflected

API Cross-Site Scripting (XSS):
Stored

Server Security
Misconfiguration: Lack of
Security Headers

Server Security
Misconfiguration: Insecure
Cipher Suite

Mobile Lack of Binary Hardening:
Lack of Jailbreak Detection Broken Access Control: IDOR

Mobile Security
Misconfiguration: Absent
SSL Certificate Pinning

Internal
Network

Components With Known
Vulnerabilities: Outdated
Software Version

Server-Side Injection:
Remote Code Execution

Server Security
Misconfiguration: Using
Default Credentials

External
Network

Components With Known
Vulnerabilities: Outdated
Software Version

Server Security
Misconfiguration: Insecure
SSL

Server Security
Misconfiguration: Insecure
Cipher Suite

Web + API Broken Access Control: IDOR Cross-Site Scripting (XSS):
Stored

Cross-Site Scripting (XSS):
Reflected

Web + Mobile Lack of Binary Hardening:
Lack of Jailbreak Detection Broken Access Control: IDOR

Insecure Data Storage:
Sensitive Application Data
Storage Unencrypted

Web + External
Network

Cross-Site Scripting (XSS):
Stored Broken Access Control: IDOR

Components With Known
Vulnerabilities: Outdated
Software Version

None of these flaws are 0-day vulnerabilities. All of them have been well-known to the industry
for years, which further strengthens our theory that there is an issue with prevention earlier in
the Software Development Lifecycle. We explore this theme in more detail under “Remediation.”

What are different industries vulnerable to?
Some industries are under more pressure than others. For example, as the COVID-19 pandemic
disrupted the world in 2020, the Healthcare and E-Learning industries saw an increase in
cyber attacks. The FBI reported a 30% increase in attacks against E-Learning targets, and
many hospitals and vaccine manufacturers became the targets of phishing campaigns.
Based on news stories like these and our pentesting experience, we were interested
in seeing what the data said on the industries that we pentest most frequently.

8

https://abcnews.go.com/Politics/fbi-warns-cyberattacks-distance-learning/story?id=75038470
https://www.wsj.com/articles/hospitals-suffer-new-wave-of-hacking-attempts-11612261802

1st Place 2nd Place 3rd Place

SaaS Cross-Site Scripting:
Stored

Broken Access
Control: Insecure
Direct Object
References (IDOR)

Cross-Site Scripting:
Reflected

Healthcare Cross-Site Scripting:
Stored

Broken Access
Control: IDOR

Components with
Known Vulnerabilities:
Outdated Software

Fintech Broken Access
Control: IDOR

Cross-Site Scripting:
Stored

Components With
Known Vulnerabilities:
Outdated Software

Insurance Cross-Site Scripting:
Reflected

Cross-Site Scripting:
Stored

Components With
Known Vulnerabilities:
Outdated Software

E-Learning Broken Access
Control: IDOR

Cross-Site Scripting:
Reflected

Cross-Site Scripting:
Stored

*Study limitation: the majority of this data relates to Web applications/API assets. For a detailed
breakdown of findings per asset type, please refer to “What are different assets vulnerable to?”

While the order varied slightly from industry to industry, it looked like each
dealt with similar flaws: variations of Cross-Site Scripting, Insecure Direct
Object References, and Outdated Software Version. That, however, doesn’t
mean that different industries deal with the same level of risk.

Consider the following: Many SaaS and Fintech companies completely rely on their
technology to keep the business running. But larger enterprises in industries like
Insurance and Healthcare are more likely to have multiple ventures and sources of
revenue, so the tested technology could only be a small part of the bigger picture.

What’s more, risk doesn’t end with the company’s business operations. It
ultimately translates to impact on end users. For example, weak TLS ciphers in
a banking app can be critical for both companies and their customers, while the
same problem in a gardening app can be considerably less exploitative.

This is also why we want to highlight one concerning trend: industries which are
more likely to handle financial, health, or other sensitive data such as Healthcare,
Insurance, and Fintech, are still susceptible to IDOR vulnerabilities. This well-known
flaw could allow an attacker to bypass authorization controls and access Personally

9

Identifiable Information (PII) or Protected Health Information (PHI). These instances
are examples of higher risk for both the company and its customers. We recommend
that companies whose reports list this vulnerability address it as a high priority.

Aside from considering what industries are vulnerable to, it’s also worth exploring
metrics that show how vulnerable they are. For example, it would be much
less alarming if the number of findings per asset was contained to an average
of 1 or 2, than if companies were observing a number closer to 10.

In exploring this question, we learned that each industry had room to improve,
but E-Learning stood out both with its average number of findings, and
what proportion of those carried High and Medium levels of risk.

This could be because many E-Learning businesses had to respond to surging demand
for digital solutions during the pandemic. We can easily picture the scenario where
businesses were pushed to prioritize faster deployments over secure development.
Security teams likely looked to pentests to compensate for what slipped past
internal checks—one of many examples of how pentests can act as an effective
layer of defense if teams are able to effectively remediate their findings.

Avg # of findings
per asset High Risk Medium Risk Low Risk

SaaS 6.5 11% 31% 58%

Healthcare 5.4 14% 27% 59%

Fintech 4.9 7% 24% 69%

Insurance 6.2 16% 24% 60%

E-Learning 8.4 17% 38% 45%

10

11

Remediation
Earlier in our report we found that the top 5 most common
vulnerability categories in our database have stayed the same
every year since 2018. When we consult other sources, such as
the OWASP Top 10 Vulnerabilities report, this problem goes back
even further. For example, Cross-Site Scripting and Broken Access
Control have made the list in each iteration since 2003. Security
Misconfigurations have also been a prevalent entry, dropping out
of the list in 2007 only to reappear in later releases.

This observation raises the inevitable question: why is the industry
struggling with the same well-known problems for so long?

To answer this, we wanted to better understand how security practitioners both
prevent vulnerabilities and remediate what their pentests discover. We wanted to
know if there were any internal issues that limited teams to higher priority items, but
also if there were external factors that were coming from their pentest providers.

In Q1 of this year, we spoke to 601 IT security professionals across the United States,
Germany, Austria, and Switzerland, all of whom worked for companies with 500 or more
employees. They were generally familiar with pentesting, and had previously used pentesting
at their companies. More information on our methodology is included in Appendix B.

To start, respondents identified and fixed 54 vulnerabilities on average
in the last calendar year. And yet 6 out of 10 said they saw these same
issues re-emerge at a later date. Why? We have a few theories.

Theory #1: Detecting vulnerabilities before code
goes live is still a work in progress.

Before we dive into pentesting-related theories, we want to look at the
bigger picture and understand why preventable issues slip past initial
checks and only come up after a third party tests for them.

Results: Nearly all respondents (96%) agreed that they have to follow
secure development principles to prevent vulnerabilities from re-emerging.
We wanted to know how they work towards achieving that:

https://owasp.org/www-project-top-ten/

12

Following secure development principles doesn’t always mean that each of these points
needs to be at 100%. Of the 43% who don’t use code reviews, for example, some might not
be using it as diligently as they need to, while others might not need it in the first place. But
the fact stands that vulnerabilities slip past these checks, as evidenced by our own data.

What this graph can tell us is that security teams are using a combination of measures to prevent
vulnerabilities early on, which is something we strongly support. It takes multiple approaches to
secure one’s environment. Pentesting isn’t the panacea of application security, but it can validate
all the other pieces of a security program and help inform what areas need to be improved.

Code Reviews

Threat Modeling

Playbooks & Training

DAST/SAST/IAST Analysis

Abuse Case Tests

Fuzzing

Other

0% 20% 40% 60%

Theory #2: Teams struggle to detect everything
that slips past internal checks because they
can’t pentest their entire application portfolio.

In addition to this theory, we also wanted to see if there were other
challenges, for example with procurement and setup.

Results: Even though 78% of study participants agree that pentesting is a high-priority
item for their security teams, respondents only conduct pentesting on 63% of their overall
application portfolio on average. What challenges could be causing this disconnect?

What security checks does your team have in the software development lifecycle (SDLC) to
find and fix vulnerabilities before pushing code to production?

13

Too difficult to find/hire
people with the right skillset

Pentesting is too expensive

Pentesting is difficult to scope

Pentesting is too slow to schedule

0% 25% 50% 75% 100%

On average
respondents pentest

On average
respondents pentest

of their application
portfolios

of their application
portfolios

63%63%

•	 Talent Matching: 86% of respondents agreed that
it is difficult to find and/or hire people with the
right skill sets for pentesting.

•	 Expense: 58% of our panelists believe that
pentesting is too expensive, with 42% going so
far as to say their company does not have the
budget to cover it.

•	 Scoping Difficulties: 61% said that pentesting is
difficult to scope.

•	 Timing: Over half of the security professionals we
interviewed agreed that pentesting is too slow to
schedule. How slow, exactly? Only 22% said they
are able to get pentesting scheduled within days;
most have to wait weeks (55%) and some even
divulged that it takes their organization months
(22%) to get a pentest project off the ground.

Percentage of respondents who agree with the listed statements

14

Aside from limiting how much teams can pentest, these pain points also lead to longer
periods of time between new code being pushed, and pentests revealing where it is vulnerable.
That can translate to months of exposure that no one is aware of and can mitigate.

None of these setbacks are connected to how engineering and security teams
work together. Instead, they are symptoms of a wider problem: the established
pentesting procurement process makes this security control less accessible, and
therefore less reliable. To enable security teams, pentests need to be available with
appropriate talent on-demand, with simpler setup and more flexible pricing.

Theory #3: Teams might be taking too long to
address Medium- or Low-risk findings.

Results: Nearly all (93%) of respondents reported that
their business solves critical vulnerabilities quickly.
The response to Low- or Medium-risk vulnerabilities
was more sluggish, with two-thirds of our respondents
agreeing that it took their team longer to respond to
these issues than it did to address High-risk attack
points. Over half (51%) confessed that their companies
were too slow in responding to these lower-risk issues,
and 67% feel that this practice creates significant risk
to business, considering that these supposedly low-
urgency vulnerabilities can chain together and escalate
into very serious problems. To minimize risk and prevent
chained exploits, 79% of our study participants agreed
that their organizations need to focus just as much
on Low or Medium vulnerabilities as they do High.

However, 25% of respondents reported that their
company takes up to 60 days—or longer—to
address Low/Medium-risk vulnerabilities, and a
small but nonetheless surprising segment (1%) of
companies don’t bother to remediate them at all.

93% Agree

66% Agree

51% Agree

67% Agree

79% Agree

My company solves for critical vulnerablities quickly.

My company takes more time to solve for medium
and low vulnerabilities than it does for critical ones.

My company takes too long to solve for
medium and low vulnerabilities.

Lack of urgent response to medium and low
vulnerabilities creates big risk for our business.

My organization needs to focus just as much
on low/medium vulnerabilities as we do high
in order to prevent chained exploits.

NeutralNeutral
StrongStrong

50%50%

Very
Strong

Very
Strong

18%18%

PoorPoor
2%2%30%30%

15

Why is this such poor practice? For a case study on the potentially disastrous consequences of
postponing so-called “low-urgency” remediation, look no further than the 2017 Equifax breach.
This breach exposed the personal information of 148 million people—more than 40% of the
population of the United States at the time—and resulted in a record-shattering $700 million
FTC settlement, their CEO stepping down amid massive public controversy, and $1.4 billion
spent cleaning up the mess. So how did this catastrophic breach occur? It happened because
of a widely-known software vulnerability for which a patch was made available—a patch that
Equifax, due to oversight in their internal processes, failed to deploy. Cobalt’s Chief Strategy
Officer Caroline Wong breaks it down: “This was not a crazy technical problem that lacked a
solution. The technical solution was available; this was a lack of people and process innovation.”

Theory #4: Remediation teams could be limited
to critical findings because of workflow issues.

Results: There is definite room for improvement here. Security and engineering teams still
have work to do to effectively collaborate, on remediation priorities and more generally. The
outcome is lower-risk findings staying exposed for longer and coming up again at a later test.

What is holding them back? Largely,
the answers are inefficient workflows
and lack of automation integrations.

A majority of security respondents
agreed that they can collaborate
better with their engineering
colleagues—much better, in some
cases. Half of our respondents
reported that the relationship
between security and engineering
teams within their company
was strong, but with room for

improvement; 18% said the relationship between these teams was neutral, in that
their teams occasionally worked together, but not as often as they should; and 2%
of respondents called this relationship poor, reporting that their team rarely worked
together with engineers at their company. Only 3 in 10 respondents were able to happily
report that their company’s security and engineering teams were “intertwined.”

So what are the biggest challenges teams need to address in order to improve DevSecOps
workflows? We posed this question to our respondents and here is what they had to say:

How would you describe the current relationship
between the security and engineering teams within
your organization?

https://www.csoonline.com/article/3411139/equifax-s-billion-dollar-data-breach-disaster-will-it-change-executive-attitudes-toward-security.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html

16

Let’s focus on manual processes and AppSec tool integrations, particularly
around remediating pentest findings. Once security teams have pentest findings
in hand, how are they sending them over to their colleagues in engineering?

Nearly three-quarters of respondents said that this was handled manually within their
organization—either the findings were manually pushed to issue tracking software (39%) or
worse, the engineering team was manually sent a PDF shared by the pentest provider (34%).
Perhaps then it is not surprising that when there was misalignment with remediation priorities,
half our respondents said that their engineering teams blamed workflow inefficiencies.

Why is this important?
Most of the time the engineering
team also makes up the remediation
team—and asking them to address
Low- and Medium-risk findings with
the same urgency as highly critical
ones is a big request when you factor
in their commitments to roadmap
execution, business enablement, and
customer satisfaction. Clearly, security
teams cannot pile requests onto these

teams unless they explore ways to free up their time with more efficient and automated
processes. For example, engineering is not involved in pentesting setup or execution and
they rarely have a say in how findings are packaged and shared with them—these are all
handled by the security team. Therefore, the responsibility lies with the latter to improve
this workflow in order to push toward DevSecOps and remediate more effectively.

Too many manual processes

Knowledge gaps re. other team’s area

Lack of AppSec tool integrations

Security teams too small to keep up

Misalignment between KPIs

0% 20% 40% 60%

of respondents share
pentest findings

manually

of respondents share
pentest findings

manually

3:43:4

What are the biggest challenges your team faces when
implementing DevSecOps?

17

Conclusion
Our data strongly suggests that security teams are still struggling with the same well-known
vulnerabilities that have plagued the industry for years. Flaws like Cross-Site Scripting and
Broken Access Control, which were among the top 5 vulnerabilities in our 2020 data, have
also been listed as a prevalent security issue in the OWASP Top 10 every year since 2003.

As much as teams aim for secure development, we conclude there are still
gaps in prevention and remediation. As to what might be causing them,
and where pentesting plays a part, we discovered the following:

1.	 The majority of teams pursue some form of secure
development, but they don’t catch everything. Pentesting
is still a valuable and effective layer of defense.

2.	 To empower security teams to test new code earlier,
pentesting needs to be faster and easier to set up, and
more financially accessible.

3.	 Ignoring or delaying remediation for Medium- and Low-risk
pentest findings can escalate into a larger issue that is
more costly to fix.

4.	 What holds remediation teams back with fixing pentest
findings are too many manual tasks and a lack of tool
integrations.

18

For the final point, we tested a few innovation ideas with our survey respondents to learn
what they felt is the best way to improve workflows and get more done with less. The
most popular was real-time delivery of findings instead of a PDF report (57%), closely
followed by choosing a provider that offers software integrations that automatically
share information and status updates between both teams’ dashboards (56%). Half
our respondents wanted to see API integrations that allow for data consolidation
and visualization, and an honorable mention went to dedicated communication
channels for security, engineering, and pentesters to collaborate (37%).

These very innovations and more are what define the movement toward Pentest as a Service
(PtaaS). Cobalt’s Pentest as a Service (PtaaS) platform, coupled with an exclusive community of
testers, delivers the real-time insights you need to remediate risk quickly and innovate securely.

Learn More at cobalt.io

Real-time delivery of findings

Software integrations

API integrations

Communication channels

0% 20% 40% 60%

What do you think is the best way to align pentesting
with both security and engineering roadmaps?

https://cobalt.io

19

Traditional PentestingTraditional Pentesting

ToolsTools

Pentest as a ServicePentest as a Service

DisconnectedDisconnected IntegratedIntegrated
Few to no shared digital tools,
findings are collected in a PDF

report and sent via email

Cloud platform hosts all relevant
pentest information and

distributes it via bi-directional
integrations with issue trackers,

or an open API

Alignment With DevOpsAlignment With DevOps

RestrictedRestricted FlexibleFlexible
Pentests have to be scheduled
months in advance and happen

once or twice a year despite
frequent code deployments

On-demand tests begin in 24
hours for either ad-hoc needs or
as part of a continuous program

in sync with code releases

WorkflowsWorkflows

SiloedSiloed CollaborativeCollaborative
Limited information on bug

reproduction and communication
overhead between engineers,

pentesters and security teams

Descriptive findings delivered in
cloud platform where teams can

collaborate in real time

AnalyticsAnalytics

VagueVague DetailedDetailed
Limited exposure to data on
vulnerabilities’ criticality and

distribution along the codebase

In-platform dashboards or open
API provide details on aggregated

risk, vulnerability severity and
distribution across assets

The PtaaS Advantage

cobalt.io

https://cobalt.io
https://cobalt.io

20

Appendix A: How to fix and prevent
the most common vulnerabilities
The following chart contains information about the 13 vulnerabilities we mentioned across this report. It includes
a short summary of the Finding, and broad advice for ensuring that your assets are protected against them.

We draw these recommendations from the expertise of our security researchers and pentesters, and
from established cybersecurity communities’ best practices, such as the OWASP’s Cheat Sheet Series
and the SANS CIS Controls. The guidance in this report is also documented in our platform.

Due to the way a website or application handles resources, one
customer’s file has an ID in the URL, for example “file123”,
which corresponds to that file’s location in the database.

An attacker who can access “file124” changes the resource ID
number to a different number, such as “file123” and can view
the other customer’s file, or anything else in the database.

A web form has a field on it that accepts user text input,
then stores that input somewhere on the server’s database.
For example, a name field on a social media site.

An attacker accesses that web form, and enters a line of
code, which the server accepts and stores in the database.

The next time a user pulls up data that includes the attacker’s
input (such as accessing the attacker’s social media profile),
their browser attempts to run whatever code they entered.

1.	 Use per-user or per-session indirect object references.
For example, instead of using the resource’s database
key, a drop-down list of six resources authorized
for the current user could use the numbers 1 to
6 to indicate which value the user selected. The
application has to map the per-user indirect reference
back to the actual database key on the server.

2.	 Check access, and ensure that each use of a
direct object reference from an untrusted source
includes an access control check to ensure the
user is authorized for the requested object.

1.	 Treat all user input as untrusted data.

2.	 Never insert untrusted data except in allowed locations.

3.	 Always input- or output-encode any data that
comes into or out of the application.

4.	 Create a whitelist of allowed characters.

5.	 Use a well-known and secure encoding API for input
and output encoding, such as the OWASP ESAPI.

6.	 Never try to write input and output encoders
unless absolutely necessary. Research
and use an existing output encoder.

Broken Access Control: Insecure Direct Object References (IDOR)
What is it:

What is it:

How to fix it:

How to fix it:

Stored Cross-Site Scripting (XSS)

https://cheatsheetseries.owasp.org/
https://www.cisecurity.org/controls/v8/

21

A website passes a piece of information in a
URL or other user-editable location, which the
server reflects back when that URL is sent.

An attacker creates a URL that contains a string of
code in that parameter in the URL. When they reload
the page on their own system, or send that URL to
another user, the browser accepts that code string and
performs whatever actions the string describes.

Note: While Stored and Reflected XSS attacks
function differently, the methods for remediating
them follow the same design principles.

A piece of software that runs a website, server,
network, or individual computers does not have
the latest security patches installed.

An attacker could search databases of documented
vulnerabilities to find information about exploiting
one of these outdated pieces of software.

A login portal or forgotten password interface, or similar
web feature, prompts users to enter their username or email
address. When a user enters a valid response, the server
displays a message saying it’s valid (such as “We are sending
a password reset email”). When they enter an invalid response,
the server displays a different message (like, “user not found”).

An attacker can use different responses to determine
what items on a list of potential usernames and email
addresses are valid. This could be a list of identified users
from past breaches, or guesses based on common first
and last names in Census data. The attacker can then
use their list of legitimate usernames to attack users.

1.	 Treat all user input as untrusted data.

2.	 Never insert untrusted data except in allowed locations.

3.	 Always input- or output-encode any data that
comes into or out of the application.

4.	 Create a whitelist of allowed characters.

5.	 Use a well-known and secure encoding API for input
and output encoding, such as the OWASP ESAPI.

6.	 Never try to write input and output encoders
unless absolutely necessary. Research
and use an existing output encoder.

Keep all software up-to-date, especially if a known vulnerability
or weakness associated with an older version exists.

It may also be worth considering a vulnerability scanner,
which can report software that has gone out-of-date,
and any documented vulnerabilities related to it.

Note: For more information about patches and
updates to specific software and hardware in your
environment, contact the relevant vendors.

Ensure that the application does not reveal existing
user names or any data associated with them, whether
because of a misconfiguration or a design decision.

Reflected Cross-Site Scripting (XSS)

Using Components with Known Vulnerabilities: Outdated Software Versions

Broken Access Control: Username or Email Enumeration

What is it:

What is it:

What is it:

How to fix it:

How to fix it:

How to fix it:

22

When a user accesses a website or application, and
the server then serves them the requested information,
it sends some information in an HTTP header. A lot of
these headers instruct the browser how to interact with
the website without rendering in the user’s window.

Some of these headers can prevent other types of attacks, such
as Clickjacking, XSS, and encryption-related downgrade attacks

When a web application sends sensitive information
(passwords, credit card details, Social Security Numbers,
or other types of PII, for example) it should send this
information encrypted. Meaning that it uses complex
ciphers to make that data unreadable to anyone other than
the intended recipient, and uses secure Transport Layer
Security (TLS) protocols to send that information securely.

However, some of these transport protocols have
become outdated, meaning it is possible for an attacker
to break into older secure communication channels
and decrypt the information. Some configurations also
allow an attacker to downgrade a communication from
a stronger cipher suite to one that they can crack.

Ensure that all HTTP servers implement the following
recommended security headers, at minimum:

•	 HTTP Strict Transport Security

•	 X-Frame-Options

•	 X-Content-Type-Options

•	 Content-Security-Policy

•	 X-Permitted-Cross-Domain-Policies
Cross-Origin-Resource-Policy

For more information on these and other headers that your
servers may need, see the OWASP Secure Headers Project.

Use only the most up-to-date TLS protocols. Configure
your servers to accept only TLS version 1.2 or higher. Do
not accept any Secure Sockets Layer (SSL) versions.

Server Security Misconfiguration: Lack of Security Headers

Weak SSL Configuration: Insecure SSL/TLS

What is it:

What is it:

How to fix it:

How to fix it:

Related to the Insecure TLS detailed above, an Insecure
Cipher Suite refers to the method by which secured data
is encrypted. Ciphers are the secret codes used to encrypt
information and make it impossible to read without knowing
the cipher itself. The goal is to ensure that people other
than the intended recipient can’t decode the message.

However, some suites of ciphers are old enough
that they have been “broken”, and can be reliably
translated back into the original text.

Create a shortlist of cipher suites that your
servers accept, and use only those.

Select only cipher suites that offer 128-bit encryption.

Weak SSL Configuration: Insecure Cipher Suites
What is it: How to fix it:

23

When a mobile device has been jailbroken, someone has
installed a custom version of the Operating System on the
device that gives them higher levels of user permissions
than the out-of-the-box version. This is sometimes called
“rooting” when it gives the user root access to their device.

Certificate pinning is the process of associating a backend
server with a specific X.509 certificate or public key instead
of accepting any certificate signed by a trusted Certificate
Authority. After storing, or “pinning”, the server certificate
or public key, the mobile app will only connect to the known
server only. This instructs the application not to trust external
Certificate Authorities, which reduces the attack surface.

Implement mechanisms to detect whether the application is
running on a jailbroken or rooted mobile Operating System.
This blocks some of the tools and techniques reverse
engineers like to use. Like most other types of defense,
jailbreak detection is not very effective by itself, but scattering
checks throughout the app’s source code can improve
the effectiveness of the overall anti-tampering scheme.

Pin and hard-code the certificate into the application.

For more information, see the OWASP cheat sheet on
Certificate Pinning: https://owasp.org/www-community/
controls/Certificate_and_Public_Key_Pinning

Lack of Binary Hardening: Lack of Jailbreak Detection

Mobile Security Misconfiguration: Absent SSL Certificate Pinning

What is it:

What is it:

How to fix it:

How to fix it:

A vulnerable application stores cleartext sensitive information
(such as usernames and passwords, PII, credit card data,
or SSNs, depending on the application) within a resource
that a user with the correct permissions could access.

Even if the information is encoded and not human-readable,
an attacker could use various techniques to determine which
encoding is being used, then decode the information.

Configure the application to store any sensitive
information in an encrypted format and resource.

OWASP also recommends performing threat modelling on your
application, to determine how it handles the following features:

•	 URL caching (requests and responses)

•	 Keyboard input cache

•	 Copy/Paste buffer cache

•	 Backgrounded application

•	 Intermediate data

•	 Logging

•	 Stored HTML5 data

•	 Browser cookie objects

•	 Third-party analytics data

Insecure Data Storage: Sensitive Application Data Storage Unencrypted
What is it: How to fix it:

https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning

24

For some server use-cases, a piece of software
may require input from a remote user to locate
and perform its intended function. For example,
user-supplied terms for a database search.

If an attacker supplies a line of code that the server
recognizes as a command, a vulnerable server may
execute that code and perform an unexpected function.

By executing the command, the server or application
could give an attacker a privilege or capability
that the attacker would not otherwise have.

Command injection can be an issue with wrapper programs.

The most effective method of eliminating Code Injection
vulnerabilities is to avoid allowing software to evaluate
code unless absolutely and explicitly necessary.

However, if there is no way to achieve the same
result without code evaluation, ensure that any user
input is validated very strongly, placing as many
restrictions as possible on that user input.

Server-Side Injection: Remote Code Execution
What is it: How to fix it:

When an application, Operating System, networked
device, or other piece of software is installed, it
may include pre-configured login credentials for an
Administrative panel, or it may create this account
with a generated password during set-up. This Admin
username and password may be written in some published
documentation, or it may be available on the Internet.

If this password is predictable, no one changes it on
the first access, an attacker could look up the password
and gain unauthorized access to the application.

1.	 Never use default credentials as it is trivial
for an attacker to gain access by providing
known or easy to guess credentials.

2.	 Always change any kind of default credentials as the
first step of setting up any kind of environment.

3.	 Ensure that all passwords meet or exceed
proper password strength requirements. Cobalt
recommends at least 12 characters, with complex
characters (symbols, capital letters, numbers).
Longer passwords are more difficult to crack.

4.	 If possible, consider disabling external access
for systems with Administrative features.

Server Security Misconfiguration: Using Default Credentials

While the fixes listed above should improve the security posture of your application and environments,
Cobalt still recommends pentesting on at least an annual basis. This report is not a substitute for a
pentest. Our database contains well over 100 vulnerabilities, and we have mentioned just a handful
in this report. Regular pentesting can catch additional flaws beyond those we mention here, and
can find new ones that may get added as you make changes to your systems. You can also learn
about these and other vulnerabilities on the OWASP, SANS CIS Controls, and CVE websites.

What is it: How to fix it:

https://owasp.org/
https://www.cisecurity.org/controls/v8/
https://www.cisecurity.org/controls/v8/
https://cve.mitre.org/

25

Appendix B: Methodology
Cobalt’s State of Pentesting report includes two types of data sets:

•	 Anonymized pentest data collected via Cobalt’s proprietary Pentest as a Service platform (referred to later
as “Cobalt’s Pentest Data”);

•	 Survey responses on questions related to pentest procurement, setup, delivery and following remediation
(referred to later as “Survey Collection”)

Cobalt’s Pentest Data Methodology

The data used in this report represents all pentests executed via Cobalt’s Pentest as a Service
platform from January 1st 2020 to December 31st 2020. Cobalt delivers third-party pentest services
via the Cobalt platform with the help of a highly curated and collaborative pentest community.

The reported data includes information on the types of assets that were tested and their discovered
vulnerabilities, which are broken down to vulnerability categories and associated findings. This accounts for
a total of 1602 pentests. The data represents large and small companies, a variety of industries ranging from
SaaS to Insurance and Fintech, and 4 geographic regions: EMEA, APAC, North America and South America.

One limitation of this study is the high concentration of pentests commissioned for Web applications
and APIs. Combined, these represent roughly 74% of all discovered findings, which is driven entirely
by customers’ decisions on what to have pentested. Despite the unequal distribution across asset
types, categories like Mobile applications and Internal and External networks still had enough
statistically significant data to allow the authors to identify prevalent vulnerabilities for each.

Survey Collection

To explore questions raised in the first half of the report, the authors commissioned an additional survey into
how security practitioners procure and manage pentests, and how they remediate discovered vulnerabilities. The
survey collected responses from 601 security professionals who work for companies with 500+ employees and
live and work either in the United States, or in the DACH region (Germany, Austria and Switzerland). To qualify,
respondents had to have a general familiarity with and history of using pentesting throughout their careers.

26

References
•	 “OWASP Top Ten Web Application Security Risks”, OWASP: https://owasp.org/www-project-top-ten/

•	 “Pfizer/BioNTech vaccine docs hacked from European Medicines Agency”, BBC: https://www.bbc.com/
news/technology-55249353 (9 December, 2020)

•	 “Hospitals Suffer New Wave of Hacking Attempts”, Wall Street Journal: https://www.wsj.com/articles/
hospitals-suffer-new-wave-of-hacking-attempts-11612261802 (2 February, 2021)

•	 “Zoom tackles hackers with new security measures”, BBC: https://www.bbc.com/news/
technology-52560602 (6 May 2020)

•	 “FBI warns of cyberattacks to distance learning”, ABC News: https://abcnews.go.com/Politics/fbi-warns-
cyberattacks-distance-learning/story?id=75038470 (4 January, 2021)

•	 “Equifax’s data breach disaster: Will it change executive attitudes toward security?”, CSO Online: https://
www.csoonline.com/article/3411139/equifax-s-billion-dollar-data-breach-disaster-will-it-change-executive-
attitudes-toward-security.html (24 July 2019)

•	 “Equifax data breach FAQ: What happened, who was affected, what was the impact?”, CSO Online:
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-
what-was-the-impact.html (12 February 2020)

•	 “OWASP Secure Headers Project”, OWASP: https://owasp.org/www-project-secure-headers/

•	 “Certificates and Public Key Pinning”, OWASP: https://owasp.org/www-community/controls/Certificate_
and_Public_Key_Pinning

•	 “NIST Password Guidelines and Best Practices for 2020”, Auth0: https://auth0.com/blog/dont-pass-on-
the-new-nist-password-guidelines/

•	 OWASP Cheat Sheet Series, OWASP: https://cheatsheetseries.owasp.org/

•	 SANS CIS Controls (version 8): https://www.cisecurity.org/controls/v8/

https://owasp.org/www-project-top-ten/
https://www.bbc.com/news/technology-55249353
https://www.bbc.com/news/technology-55249353
https://www.wsj.com/articles/hospitals-suffer-new-wave-of-hacking-attempts-11612261802
https://www.wsj.com/articles/hospitals-suffer-new-wave-of-hacking-attempts-11612261802
https://www.bbc.com/news/technology-52560602
https://www.bbc.com/news/technology-52560602
https://abcnews.go.com/Politics/fbi-warns-cyberattacks-distance-learning/story?id=75038470
https://abcnews.go.com/Politics/fbi-warns-cyberattacks-distance-learning/story?id=75038470
https://www.csoonline.com/article/3411139/equifax-s-billion-dollar-data-breach-disaster-will-it-change-executive-attitudes-toward-security.html
https://www.csoonline.com/article/3411139/equifax-s-billion-dollar-data-breach-disaster-will-it-change-executive-attitudes-toward-security.html
https://www.csoonline.com/article/3411139/equifax-s-billion-dollar-data-breach-disaster-will-it-change-executive-attitudes-toward-security.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://owasp.org/www-project-secure-headers/
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://auth0.com/blog/dont-pass-on-the-new-nist-password-guidelines/
https://auth0.com/blog/dont-pass-on-the-new-nist-password-guidelines/
https://cheatsheetseries.owasp.org/
 https://www.cisecurity.org/controls/v8/

27

Authors

Jay Paz, Director of Pentest Operations and Research at Cobalt

Jay has more than 12 years of experience in information security and 19+ years of information technology
experience including system analysis, design, and implementation for enterprise level solutions. He
has a robust background in developer supervision and training as well as in major programming
languages, operating hardware and software, and major infrastructure application development.

Robert Kugler, Manager, PenOps Research at Cobalt

Robert Kugler is an information security researcher and pentester who has made his passion for breaking things
his job. His background spans over 10 years of data protection, security management and research, as well as
penetration testing. Robert has helped strengthen the security of companies such as Mozilla, Axel Springer,
PayPal, Spotify, Sophos, Sony, Fitbit, and Deutsche Telekom. In the past, he has given several presentations
on IoT security, digital self-defense, the security risks of anti-virus software, and discovered 0days.

Contributors

Caroline Wong, Chief Strategy Officer at Cobalt
As CSO, Caroline leads the Security, Community, and People teams at Cobalt. She brings a proven background in
communications, cybersecurity, and experience delivering global programs to the role. Caroline’s close and practical
information security knowledge stems from her broad experience as a Cigital consultant, a Symantec product manager,
and day-to-day leadership roles at eBay and Zynga.

Travis McCormack, Senior Pentest Architect at Cobalt
Travis has been working in the security industry for over 5 years and within IT for over 10 years. He began working
within network administration and has since applied those skills and knowledge of network communications and
troubleshooting to his career in network security and pentesting.

Danilo Simoes Brambila, Staff Data Engineer at Cobalt
Danilo is passionate about Data & Analytics and over the last 5 years has helped businesses to create modern data
platforms and extract value from data. Prior to that he had an extensive academic career, where he specialized in
the development of scientific software for simulating complex quantum phenomena and also Advanced analytics for
interpreting a wide range of experiments in fields such as nonlinear fibre optics, Attosecond light pulse generation and
Material Science.

